Les bactéries multi-résistantes aux antibiotiques: un problème majeur de Santé publique

Youri Glupczynski
Président du Comité d’Hygiène Hospitalière, CHU Dinant-Godinne,
Centre National de Référence de la résistance aux antibiotiques,
CHU Dinant-Godinne
Evolution de la résistance aux antibiotiques

Wild-type

Penicillinases (TEM-1, SHV-1)

ESBLs (CTX-M >>SHV,TEM)

Carbapenemases

CHU Dinant Godinne | UCL Namur
Recent evolution of β-lactamases

- **Antibiotics into humans**: 1943
 - Penicillins: TEM-1, SHV-1, OXA-1
 - S. aureus penicillinase

- **Antibiotics into livestock, poultry, fish**: 1950
 - Amino-Penicillin oral cephalosporins
 - 3 Generation cephalosporins
 - Carbapenems
 - Tigecycline

- **1970**: Mutation
 - Tn3 transposon Plasmid

- **1980**: AmpC
 - Plasmid: CMY, MOX, FOX, CAT, MIR
 - Inhibit Resist TEM

- **1990**: ESAC
 - Enterobacteriaceae carbapenemases AmpC+BLSE+porin loss
 - PANRESISTANCE

- **2000**: Mobilisation

- **2010**: Carbapenemases
 - Plasmid: carbapenemases KPC, MBL
 - Rivers bacteria, Animals (Farms/pets)

- **2011**: Selection
 - 4 Generation cephalosporins

- **2013**: Inhibitors combinations
 - ESBL: 30 years
 - Carbapenemases: 15 years

- **2015**: 50% de l’usage AB: domaine vétérinaire (agro-alimentaire)

- **2017**: Mutations
 - 60% E.coli Ampi-R
 - Escherichia coli BLSE

- **2019**: Local Therapeutic failure

- **2020**: Epidemics
 - Endemic panresistance
 - No therapeutic options

- **2021**: Endemic
 - Hysteria in hospitals
 - Hysteria in community

- **2022**: Hysteria in globe

- **2023**: BL 70 years

- **2024**: ESBL: 30 years

70% of total ATB in USA is fed To healthy farm animals
The miracle of antibiotics: «the problem»

Resistance to antimicrobial drugs: a worldwide calamity
Ann Inter Med 1993

Antimicrobial resistance is a major threat to public health

Superbugs are beating at the gates
New scientist 1999

Has been recognized as a priority for intervention by health agencies at national and international level
How does Industry address the problem?

A PERFECT STORM
As bacterial infections grow more resistant to antibiotics, companies are pulling out of antibiotics research and fewer new antibiotics are being approved.

- **Big Pharma:**
 - GlaxoSmithKline
 - AstraZeneca
 - Merck & Co
 - (Pfizer)

Antibacterial Pipeline (Anti–Gram Positive and Anti–Gram Negative), Big Pharma

<table>
<thead>
<tr>
<th>Company</th>
<th>Since 1998</th>
<th>Phase 2/3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott Laboratories</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>AstraZeneca</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Bayer</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>GlaxoSmithKline</td>
<td>0</td>
<td>X</td>
</tr>
<tr>
<td>Lilly</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Merck/Schering-Plough</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Novartis</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ortho McNeil/Johnson & Johnson</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pfizer/Wyeth</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Roche</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sanofi</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

*Proportion of clinical isolates that are resistant to antibiotic. MRSA, methicillin-resistant Staphylococcus aureus. VRE, vancomycin-resistant Enterococcus. FQRP, fluoroquinolone-resistant Pseudomonas aeruginosa.

Antibiotic consumption in Belgium

Figure 9. Sales for food-producing species, including horses, in mg/PCU, of the various veterinary antimicrobial classes, by country, for 2010

Source: ESVAC report, Sales of veterinary antimicrobial agents in 19 EU/EEA countries: 2010

Figure 3.2. Consumption of antibacterials for systemic use (ATC group J01) at ATC group level 3 in the community, EU/EEA countries, 2010, expressed as DDD per 1,000 inhabitants and per day

EU/EEA countries, 2010, at group level 3, expressed as DDD per 1,000 inhabitants and per day.
Escherichia coli: pourcentage de souches résistantes aux Céphalosporines de 3^{ème} génération en Europe (2013)

weighted mean resistance : 12.6%
5% (Iceland) – 39.6% (Bulgaria)
14 countries: <10%
12 countries: 10-25%
4 countries: >25%

Mean weighed Resistance: 9% en 2010 -> 13% en 2013
Augmentation de la résistance dans 17 pays
85-100% of C3G-R *E. coli*: ESBL-positive

Antimicrobial resistance surveillance in Europe
EARS-Net Report 2013
www.ecdc.europa.eu
Flux de bactéries multirésistantes dans différents écosystèmes (exemple des Entérobactéries BLSE+)
CPE infections at the intersection of health care and general community.
Flux de la résistance aux antibiotiques : « Macro-mobilisation »

Globalisation

Map of air traffic around the world

Trend of international tourism

Acquisition de BLSE chez les voyageurs: 5 to 85%

18% des voyageurs toujours porteurs de bactéries BLSE+ acquises après 6 mois
Transmission et dissémination e la résistance bactérienne aux antibiotiques

- **Horizontal & vertical transmission:**
 - Transmission horizontale: échanges de matériel génétique entre bactéries
 - Transmission verticale: division cellulaire (temps de génération: 10-15 min)

1 génération de bactérie= 10 min
1 g de selles= 10^{13-14} bactéries
The Dirty Doctor

Cell phone
- *S. aureus*: 5.3 à 36.8% [1-4]
- MRSA: 2.5 à 9.5%

Neck ties
- *S. aureus* on 8/40 (20%) dont 7 MRSA (UK)
- 70% neck ties never cleaned [9]

Stethoscopes
Acquire and transfer *S. aureus* as easily as hands [5]

S. aureus on 1 to 38% (MRSA found in every study) [6-8]

22 à 45% surveyed physicians do not disinfect it regularly

11% physicians warmed up the head of the stethoscope with their hands before use

1 Akinyemi et al J Infect Dev Ctries. 2009 Sep 15;3(8):628-32
2 Ustun et al J Occup Environ Hyg. 2012;9(9):538-42
4 Goldblatt et al Infect Control Hosp Epidemiol. 2007 Apr;28(4):500-3
6 Tang et al CJEM. 2011 Jul;13(4):239-44
7 Bernard et al Infect Control Hosp Epidemiol. 1999 Sep;20(9):626-8
8 Marinella et al Arch Intern Med. 1997 Apr 14;157(7):786-90
9 Ditchburn en al J Hosp Infect. 2006 Jun;63(2):227-8
Contamination de l’environnement inanimé autour des patients

- Surfaces proches des patients sont fréquemment contaminées par des microorganismes acquis à l’hôpital (pathogènes nosocomiaux)
 - MRSA
 - VRE
 - Clostridium difficile
 - Acinetobacter baumanii
 - Enterobactéries multi-résistantes (ESBL, CPE)
Epidemiologie des Entérobactéries BLSE + dans les hôpitaux aigus et dans les MRS en Belgique

Graph provided by Béa Jans, Public Health Institute

Prevalence of ESBL-E. coli among NH residents 2011 (%)
Incidence of ESBL-E. coli among hospitalized patients 2011 (/ 1000 admissions)

2011 Nursing homes ESBL enzymes distribution (n=201)

- CTX-M group 1: 55%
- CTX-M group 9: 14%
- CTX-M group 2: 18%
- TEM-3, -52 like: 1%
- TEM-24 like: 1%
- TEM-20 like: 2%
- TEM-101 like: 1%
- Other TEM: 3%
- SHV-4,-5,-12 like: 1%
Facteurs de risque de portage de BLSE en MRS

- Le niveau de mobilité
- Hommes
- Exposition préalable aux AB
- Portage connu de BLSE
- Maladies (BPCO, IUR)
- Les sondes urinaires
- Les plaies chroniques
- Le niveau d’autonomie

B. Jans, D. Schoevaerds et al., PLOS 2013
Le rôle de l’exposition aux antibiotiques

Ex: Pénicilline, Amoxi-clav., Levofloxacine, Clindamycine
Emergence rapide des carbapénémases de type NDM

Continent Indien (1.8 Milliard/hab., hygiène/niveau socioéconomique bas)
Voyages (Tourisme médical: UK -> Inde)

India: 6.309.000 arrivals in 2011

Diffusion rapide de la résistance plusieurs clones et espèces différentes (K. pneumoniae, E. coli)

P. Nordmann, Emerg Inf Dis 2011

100 million Indians could be carrying NDM-1'

By Kouteya Sinha, TNN | Oct 9, 2011, 01.46 AM IST
Dissémination intercontinentale rapide des isolats d’Entérobactéries (Klebsiella et autres) productrices de carbapenemase KPC (2007-2012)

With courtesy from L. Poirel & P. Nordmann
Firenze 21/06/2013 (EuSCAPE meeting)
Epidemiological stage of CPE isolates in Europe (39 countries) in 2013
CPE dans le top 3 des agents considérés comme une menace majeure de Santé Publique
Mortalité plus élevée liées aux infections causées par CPE (K. pneumoniae)

 *69 bacteriemies/septicémies

patients avec CR-Kp: mortalité globale pendant le séjour ↑3x et mortalité liée à l’infection ↑4x par rapports aux contrôles (infections avec CS-Kp)

Patel et al ICHE 2008; 29: 1099
Multi-résistance aux antibiotiques des souches productrices de Carbapénémases (CPE)

<table>
<thead>
<tr>
<th>%S_MIC EUCAST</th>
<th>K. pneumoniae</th>
<th>E. cloacae</th>
<th>E. coli</th>
<th>C. freundii</th>
<th>K. oxytoca</th>
<th>Other species</th>
<th>Total CPE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total n CPE</td>
<td>297</td>
<td>66</td>
<td>72</td>
<td>34</td>
<td>26</td>
<td>24</td>
<td>519</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>12%</td>
<td>3%</td>
<td>42%</td>
<td>3%</td>
<td>31%</td>
<td>8%</td>
<td>15%</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>14%</td>
<td>11%</td>
<td>50%</td>
<td>3%</td>
<td>35%</td>
<td>4%</td>
<td>19%</td>
</tr>
<tr>
<td>Cefepime</td>
<td>15%</td>
<td>15%</td>
<td>53%</td>
<td>41%</td>
<td>38%</td>
<td>25%</td>
<td>24%</td>
</tr>
<tr>
<td>Aztreonam</td>
<td>14%</td>
<td>23%</td>
<td>56%</td>
<td>15%</td>
<td>19%</td>
<td>25%</td>
<td>22%</td>
</tr>
<tr>
<td>Piperacillin+tazobactam</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Temocillin</td>
<td>0%</td>
<td>2%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Ertapenem</td>
<td>5%</td>
<td>0%</td>
<td>35%</td>
<td>6%</td>
<td>19%</td>
<td>4%</td>
<td>9%</td>
</tr>
<tr>
<td>Meropenem</td>
<td>55%</td>
<td>36%</td>
<td>79%</td>
<td>85%</td>
<td>81%</td>
<td>71%</td>
<td>60%</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>44%</td>
<td>44%</td>
<td>64%</td>
<td>53%</td>
<td>69%</td>
<td>42%</td>
<td>49%</td>
</tr>
<tr>
<td>Tobramycin</td>
<td>20%</td>
<td>14%</td>
<td>63%</td>
<td>21%</td>
<td>42%</td>
<td>21%</td>
<td>26%</td>
</tr>
<tr>
<td>Amikacin</td>
<td>65%</td>
<td>64%</td>
<td>82%</td>
<td>76%</td>
<td>81%</td>
<td>71%</td>
<td>69%</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>15%</td>
<td>14%</td>
<td>47%</td>
<td>3%</td>
<td>35%</td>
<td>33%</td>
<td>20%</td>
</tr>
<tr>
<td>Colistin</td>
<td>90%</td>
<td>100%</td>
<td>99%</td>
<td>100%</td>
<td>92%</td>
<td>75%</td>
<td>92%</td>
</tr>
<tr>
<td>Tigecycline</td>
<td>82%</td>
<td>82%</td>
<td>97%</td>
<td>97%</td>
<td>85%</td>
<td>79%</td>
<td>85%</td>
</tr>
</tbody>
</table>

Données belges 2014:
Centre National de la résistance aux antibiotiques
CHU Dinant-Godinne
AVIS DU CONSEIL SUPERIEUR DE LA SANTE N° 8791

Mesures à prendre suite à l’émergence des entérobactéries productrices de carbapénémases (CPE) en Belgique
07 décembre 2011

Entérobactéries productrices de carbapénémases: caractéristiques microbiologiques et diagnostic au laboratoire.
Rapport du Comité d'Evaluation Externe de la Qualité (EEQ) 2012/3 (Klebsiella)
Prof. Youri Glupczynski, Centre National de Référence, Mont-Godinne

Appel à l’usage responsable d’antibiotiques en pratique ambulatoire suite à la récente augmentation des bactéries à gram-négatif multi-résistantes

Appel à l’utilisation rationnelle d’antibiotiques dans les hôpitaux suite à l’émergence de bactéries Gram-négatives multi-résistantes

Prise en charge thérapeutique des patients présentant une infection à entérobactéries productrices de carbapénémases (CPE)
CONTROL MEASURES IN CASE OF PRESENCE OF CPE IN AN ACUTE HOSPITAL AND SUSPICION OF SECONDARY TRANSMISSION (CLUSTER = MIN. 1 SECONDARY CASE)

When? At least one **documented CPE case** and suspicion of a **new case** (colonised/infected) linked to index case

Organisational measures

- **Set up of a Multidisciplinary outbreak management cell team**
 - Coordination and Management of epidemics, communication internal/external
 - Notification and registry of cases, collection of epidemiologic, clinical and laboratory data

Laboratory

- **Store all CPE strains** (if typing needed, MIC testing,....)
- **Retrospective review of laboratory data** (12 months)
- **Send only ‘suspected isolates’**, not necessary to refer to NRC all CPE strain once outbreak is confirmed

Control of transmission

- Inform nursing staff and medical teams about types of precautions to be implemented
- Check on site strict application of standard and additional precautions
- Limit mobility/transfer of CPE carriers

Screening

- All patient in contact with a CPE carrier
- Routine (min. 1x/wk): all patients (same time/same unit) in vicinity of CPE carrier
- Epidemic phase: All patients admitted to high risk units (ICU, Hemato-onco, burn,....)
- Do not screen HCW, nor environment

MEASURES IN CASE OF UNCONTROLLED OUTBREAK

≥ 1 **secondary case**, despite correct implementation of all recommendations

Cohorting of nursing staff, temporary closure of unit (admission stop), limit to maximum internal and external transfers
Evolution of the distribution of resistance mechanisms of carbapenemase-producing Enterobacteriaceae isolates, National Reference Centre, Belgium, January 2007 – December 2014 (n=1169)
Evolution of the species distribution of carbapenemase-producing *Enterobacteriaceae* isolates, National Reference Centre, Belgium, January 2007 – December 2014 (n=1169)
Contexte d’importation des isolats CPE en Belgique
Centre National de Référence,
Jan. 2014 – Déc. 2014 (n=512)

<table>
<thead>
<tr>
<th>Patients</th>
<th>Carbapenemase</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VIM</td>
</tr>
<tr>
<td>Notion de voyage</td>
<td></td>
</tr>
<tr>
<td>Pas de voyage à l’étranger</td>
<td>29</td>
</tr>
<tr>
<td>Inconnu</td>
<td>6</td>
</tr>
<tr>
<td>Pays d’origine</td>
<td>1</td>
</tr>
<tr>
<td>Grèce</td>
<td>2</td>
</tr>
<tr>
<td>Turquie</td>
<td>0</td>
</tr>
<tr>
<td>Maroc</td>
<td>2</td>
</tr>
<tr>
<td>Inde</td>
<td>0</td>
</tr>
<tr>
<td>Tunisie</td>
<td>0</td>
</tr>
<tr>
<td>Pakistan</td>
<td>0</td>
</tr>
<tr>
<td>Afrique sub-saharienne</td>
<td>0</td>
</tr>
<tr>
<td>Roumanie</td>
<td>0</td>
</tr>
<tr>
<td>USA</td>
<td>0</td>
</tr>
<tr>
<td>Asie</td>
<td>0</td>
</tr>
<tr>
<td>Iran</td>
<td>1</td>
</tr>
<tr>
<td>Europe</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>42</td>
</tr>
</tbody>
</table>

Seule une minorité des patients porteurs de CPE a voyagé à l’étranger: 10-15%
Carbapenemases (CPE): La triple difficulté (DDC)

- **Difficulté de détection** en clinique et au laboratoire

- **Difficulté de traitement** (caractère multi-résistant, peu d’antibiotiques encore actifs, peu/pas de développement de nouvelles molécules)

- **Difficulté de contenir la transmission** et la dissémination et de contrôler les épidémies (loco-régionales, nationales, pandémies)
 - Péril fécal (flore intestinale= 10^{14} germes...par g matière fécale (→ gestion des excréta, « péril fécal »)
 - Persistence prolongée du portage intestinale asymptomatique de CPE (40% des patients encore porteurs après 12 mois)
 - Persistence dans l’environnement inanimé pdt périodes prolongées (semaines, plusieurs mois,...) en milieu hospitalier
Carbapénémases de type OXA-48: «The Phantom menace»

- Surtout chez *K. pneumoniae* (*E. coli, E. cloacae*)
- pOXA-48 (IncL/M), plasmide conjuguatif de 62 kB plasmid (transposon composite Tn1999)
- Turquie, Afrique du Nord, Proche Orient → diffusion rapide en Europe depuis 2011 (France, Espagne, UK, Belgique, Allemagne,...)
- Niveau de résistance variable parfois très faible aux carbapenèmes (meropenem MIC: <0.5->128)
- Sensible aux céphalosporines 3-4° gen lorsque pas de présence d’autres mécanismes de résistance
- Resistance aux pénicillines; pas d’effets des inhibiteurs de beta-lactamase (clav, tazo, sulb)
- Difficulté de détection (bas niveau R, algorithmes des systèmes de détection pas adaptés)
Proportion de bactéries multirésistantes non détectées en l’absence d’une surveillance active

% de patients non détectés par surveillance passive basée seulement sur résultats d’analyses d’échantillons motivés uniquement par la clinique

➢ MRSA: > 50% ¹

➢ BLSE
 ✓ 24% (transplantés organes solides USA-2002) ²
 ✓ 60% (USI-MED, USI-CHIR USA 2004) ³

➢ CPE: 50-75% des cas

² Gardam et al JID 2002; 186: 1754
³ Harris et al ICHE 2004; 25: 105
Screening des Entérobactéries multirésistantes aux antibiotiques (CPE/BLSE)

Réservoir

- Tube digestif (flore intestinale) → péril fécal (patient incontinents (urinaire/fécal) -> Selle ou frottis rectal
 - Périné/plis inguinaux: moindre sensibilité de détection (30-60%)
 - Urine et voies resp. sup (gorge) (respectivement 82% et 12% pour la détection de BLSE (patients USI)

- Motivation
- Formation/training du personnel

1 Tschudin-Sutter ICHE 2012; 33: 1170
Transfert d’unités de long séjour (LTCF) vers hôpital aigu

4 hôpitaux aigus (Chicago), épidémie de KPC
Etude cas-témoin

- **Frottis rectaux pour détection de CPE lors de l’admission à l’hôpital**
 - Données cliniques/démographiques pour 360 patients
 - Appariement (1:1) patients transférés d’une LTCF ou directement à partir de leur domicile (communauté)

- **Prévalence de KPC**: 8.3% chez patients transférés d’une LTCF vs 0% chez patient venant de la communauté (domicile)

- **Modèle statistique (régression logistique multivariable)**
 - OR: 7x plus élevé chez patients avec soins lourds
 - (p.ex : support ventilation) (27% vs 1.5% chez patients sans soins spécialisés)

Transfert d’unités long séjour avec soins spécialisés/lourds à haut risque de portage de CPE
Importance d’identifier les groupes à plus haut risques pour interventions ciblées
Fighting for the global control of CPE
Facteurs de risque de portage de CPE

Indication absolue de screening:

✓ Patients transférés d’un hôpital à l’étranger (rapatriement sanitaire)
✓ Patients ayant reçu des soins (hospitalisés ou pas) à l’étranger (dans les 6 mois-CDC)
✓ Patients épidemiologiquement lié à un autre porteur de CPE non reconnu initialement comme tel (voisins de chambres)
✓ Patients connus comme anciennement colonisés known as previously infected or colonized by CPE

Indication relative:

✓ Dépendance fonctionnelles (faible degré d’autonomie)
✓ Incontinence (urinaire/fécale)
✓ Porteurs de sondes/corps étrangers
✓ Hospitalisation préalable ou transfert MRS en Belgique (12 m)
✓ Cures multiples d’antibiotiques dans les 3-6 mois)
Autres facteurs de risque rapportés pour la colonisation par BLSE et CPE

- Exposition présente ou passée aux antibiotiques (3 mois)
- Usage de quinolones, beta-lactamines
- Séjour prolongé à l’hôpital
- Cancers
- Status fonctionnel altéré
- Procédure invasive non-chirurgicale (ventilation mécanique, cathé IV, sondes, stomies,...)
- Admission en soins intensifs
- Voisins de chambre d’un porteur connu, pas de sanitaire/cabinet de toilette privé
- Incontinence fécale/urinaire

Adhésion aux mesures/précautions d’hygiene, politique de bonne utilisation des antibiotiques sont des éléments essentiels des programmes de prévention/contrôle des CPE

Akova et al., CMI 2012
Impact des mesures d’interventions pour le contrôle d’épidémies à CPE

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Increased hand hygiene precautions</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
</tr>
<tr>
<td>Increased compliance with gowns and gloves</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
</tr>
<tr>
<td>Rectal surveillance initiated</td>
<td>Yes</td>
<td>--</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>--</td>
<td>Yes(^*)</td>
<td>Yes</td>
</tr>
<tr>
<td>Grouping of KPC-positive patients</td>
<td>Yes</td>
<td>--</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
</tr>
<tr>
<td>Grouping of staff caring for KPC-positive patients</td>
<td>Yes</td>
<td>--</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>--</td>
<td>Yes(^*)</td>
<td>--</td>
</tr>
<tr>
<td>Education on hospital epidemiology of KPC among health-care workers</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Increased environmental cleaning</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Cultures of environmental surfaces in patients’ rooms</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>Yes</td>
<td>--</td>
<td>Yes(^*)</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Daily chlorhexidine baths</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Regular infection control reports of new cases to affected units</td>
<td>--</td>
</tr>
<tr>
<td>Flagging of cases in hospital database</td>
<td>--</td>
</tr>
<tr>
<td>Closing the ICU</td>
<td>Yes</td>
<td>--</td>
</tr>
<tr>
<td>Surveillance cultures obtained from staff</td>
<td>--</td>
<td>Yes</td>
</tr>
<tr>
<td>Dedicated equipment for KPC-positive patients</td>
<td>--</td>
<td>--</td>
<td>Yes</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Decreased antibiotic use or antibiotic restriction</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>Yes(^*)</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>Outbreak improved or controlled</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>Yes(^*)</td>
<td>Yes</td>
</tr>
</tbody>
</table>

ICU=intensive care unit. KPC=Klebsiella pneumoniae carbapenemase. --not reported. Symbols represent bundles that were implemented in a staggered fashion: * first phase; †second phase; ‡third phase.
Précautions de contact et mesures d’isolement pour les patients porteurs de CPE

Contexte d’hôpital aigu: Isolement de contact préemptif (chambre avec sanitaire privé) des patients hospitalisés en attente des résultats des frottis de dépistage/screening

- Patients transférés d’un pays étranger, hospitalisation en Belgique dans les 12 mois, admission à partir d’un centre accueil de réfugiés,...
- Patients transférés d’une MRS/unité de long séjour (revalidation)
- Patients antérieurement connus comme porteur de CPE (colonisé/infecté)

institution long séjour/MRS: Précautions de contact pour les patients:

- Faible degré d’autonomie dans les activités de la vie quotidienne
- Ventilation assistée
- Incontinence (urinaire/fécale)
- Plaies suintantes
Importance des systèmes d’alerte informatique (réadmission/transfert)

<table>
<thead>
<tr>
<th>Micro-organism</th>
<th>Duration of carriage</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>MRSA</td>
<td>Up to 40 months</td>
<td></td>
</tr>
<tr>
<td>ESBL-E</td>
<td>Median time for clearance 6,6 months</td>
<td>Positive culture in a screening sample only during the index admission significantly associated with ESBL-E clearance (448 pts)(^1)</td>
</tr>
<tr>
<td>CPE</td>
<td>Median time for clearance 7,5 months, 39% at 1 year</td>
<td>Risk factors for extended CRE carriage (97 pts)(^2)</td>
</tr>
</tbody>
</table>

- Multiple hospitalisations
- Index sample = clinical sample (ie: infection rather than colonization)
- < 1 year passed without further hospitalization

Automatic alert system to identify MDR-positive patients at the time of readmission is critical to ensure that screening and barrier precautions are instituted promptly

\(^1\) Birgand et al Am J Infect Control 2012
\(^2\) Zimmerman et al AJIC 2013; 41: 190
Que nous réserve l’avenir ?

- **Diversification des espèces et des mécanismes de résistances (CPE, BLSE,…)**
- **Augmentation de la proportion de CPE acquises de manière autochtone (sans importation de l’étranger)**
- **Augmentation de la proportion dans les hôpitaux Belges (plusieurs études en cours)**

Augmentation des réservoirs dans les institutions aigues/chronique de long séjour (services gériatrie, réhabilitation, MRS…) :

- Portage asymptomatique intestinal de CPE de longue durée (40% porteurs CPE à 12 mois; favorisés par l’utilisation d’AB), Impossibilité d’isoler les résidents en MRS porteurs de CPE en chambre seule (Lieu de vie)
- Risque accru de transmission croisée : grand nombre de patients/résidents incontinents (« Peril fécal ») :
 - >50% des résidents de MRS en Belgique sont incontinents urinaire,
 - 33% présentent une incontinence fécale
Que nous réserve l’avenir ?

- La décolonisation des patients porteurs de CPE n’est pas possible (pas de Rx actif)
- Les résidents de MRS sont fréquemment transférés à l’hôpital (30% dans l’année »)
- Fréquence élevée de contacts sociaux (famille, autres pensionnaires résidents) et/ou contact individuel avec personnel soignant

 o Augmentation des réservoirs de CPE dans la communauté (E. coli)

 Dissémination intercontinentale rapide de certains clones pandémiques (cf. ST131 CTX-M-15 E. coli; ST-258 KPC-2 K. pneumoniae)