Can $ABCB1$ genetic polymorphisms explain the inter-individual variability in DOAC plasma concentrations?
DOACs have a predictable dose response. They are given in a fixed-dose regimen.

Inter-individual variability in DOAC plasma concentrations has been described.

DOAC plasma levels in patients with AF during routine visits

Gulilat et al, Canadian Journal of Cardiology 2017; 33:1036-1043
P-glycoprotein (ABCB1, MDR1) Transporters that rely on ATP to actively pump substrates across cell membranes

- Paclitaxel, doxorubicin, etoposide
- Erythromycin, clarithromycin, rifampicin
- Ciclosporin, tacrolimus
- Imatinib, nilotinib, dasatinib
- Ritonavir, saquinavir
- Digoxin, quinidine, amiodarone
- Diltiazem, verapamil
- Atorvastatin, simvastatin
- Bisoprolol, clopidogrel
- Rivaroxaban, dabigatran etexilate
- Apixaban, edoxaban

42% of hospitalized patients with AF take P-gp affecting drugs.

ABCB1 genetic polymorphisms

Normal variations between individuals in their DNA sequence

Main source of genetic variability = single nucleotide polymorphisms (SNP)

1 SNP every 300 base pairs!

ABCB1 Chromosome 7q –1279 SNPs (*62 coding SNPs*)

ABCB1 genetic polymorphisms

3 most common SNPs

<table>
<thead>
<tr>
<th>SNP</th>
<th>Exon</th>
<th>Amino Acid Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1236C>T</td>
<td>Exon 13</td>
<td>Gly412Gly</td>
</tr>
<tr>
<td>2677G>T/A</td>
<td>Exon 22</td>
<td>Ala893Ser/Thr</td>
</tr>
<tr>
<td>3435C>T</td>
<td>Exon 26</td>
<td>Ile1145Ile</td>
</tr>
</tbody>
</table>

Allelic frequency around 50% in Caucasians
Strong linkage disequilibrium

Other SNP of interest

<table>
<thead>
<tr>
<th>SNP</th>
<th>Exon</th>
<th>Amino Acid Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>1199G>A</td>
<td>Exon 11</td>
<td>Ser400Asn</td>
</tr>
</tbody>
</table>

Nonsynonymous SNP (amino acid change)
Cytoplasmic loop involved in substrate recognition
Allelic frequency around 6% in Caucasians

Immunosuppressant, anticancer agents, anti-HIV, antiepileptic drugs, antidepressants...

<table>
<thead>
<tr>
<th>Compound</th>
<th>1199A activity* (in vitro assay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhodamine</td>
<td>= or ↓ (fluorescence)</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>= (cytotoxicity)</td>
</tr>
<tr>
<td>Vinblastine</td>
<td>↑ (cytotoxicity)</td>
</tr>
<tr>
<td>Vincristine</td>
<td>↑ (cytotoxicity)</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>↑ (cytotoxicity)</td>
</tr>
<tr>
<td>Etoposide (VP-16)</td>
<td>↑ (cytotoxicity)</td>
</tr>
<tr>
<td>HIV protease inhibitors</td>
<td>↑ (accumulation)</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>= or ↑ (accumulation)</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>↓ (accumulation)</td>
</tr>
</tbody>
</table>

Objectives and method

Can *ABCB1* genetic polymorphisms explain the inter-individual variability in DOAC plasma concentrations?

in vitro effect of *ABCB1* genetic polymorphisms on the transport activity towards DOACs

- **1236C>T-2677G>T-3435C>T**
 - Control = empty vector
 - 1236C, 2677G, 3435C
 - 1236C, 2677G, 3435T
 - 1236T, 2677T, 3435T

- **1199G>A**
 - Control = empty vector
 - 1199G
 - 1199A

HEK293 cells (Human Embryonic Kidney) Stably transfected to overexpress ABCB1

Intracellular accumulation Rivaroxaban
INTRODUCTION

OBJECTIVES-METHOD

RESULTS

DISCUSSION

1. Cell culture
2. ABCB1 expression
3. Intracellular accumulation
4. LC-MS/MS analysis

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>D1</td>
<td>± D10</td>
<td>± D14</td>
<td>± D21</td>
</tr>
</tbody>
</table>

Cells in 24-well plates

Addition of rivaroxaban at 5 different concentrations:

- 50 ng/ml
- 100 ng/ml
- 250 ng/ml
- 500 ng/ml
- 1000 ng/ml

Triplicates

Incubation for 120 min

Centrifugation and removal of the supernatant

Conservation of cell pellets at -80°C until quantification
Intracellular accumulation of rivaroxaban after 120 min of incubation (N=3)

- **1236C>T-2677G>T-3435C>T**
 - Intracellular accumulation ↓ in recombinant cells overexpressing ABCB1
 - No statistical difference between cells overexpressing the ABCB1 WILD-TYPE and VARIANT proteins

- **1199G>A**
 - Compared to control cells: *p<0.05 **p<0.01 ***p<0.001
ABCB1 polymorphisms and DOACs

1st *in vitro* study on the role of ABCB1 genetic determinants in the transport of DOAC

Rivaroxaban-Induced Hemorrhage Associated with ABCB1 Genetic Defect

Kuntheavy Ing Lorenzini1*, Youssef Daali2, Pierre Fontana2, Jules Desmeules1 and Caroline Samer1

79-year-old male – rivaroxaban 20mg OD
231 ng/ml (24h post-intake) + delayed clearance

Role of 2677TT-3435TT ?

↔ High frequency of the homozygous genotype
↔ Renal impairment on admission
↔ Concomitant use of simvastatin

60 Caucasian healthy males
No significant effect of 2677G>T-3435C>T on DOAC pharmacokinetics
Clarithromycin: ↑ AUC 2x

ORIGINAL ARTICLE

Interindividual variability in dabigatran and rivaroxaban exposure: contribution of ABCB1 genetic polymorphisms and interaction with clarithromycin

How to explain the findings?

- **1199G>A has a substrate-dependent impact on drug transport.**

<table>
<thead>
<tr>
<th>Compound</th>
<th>1199A activity* (in vitro assay)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV protease inhibitors</td>
<td>↑ (accumulation)</td>
</tr>
<tr>
<td>Cyclosporin A</td>
<td>= or ↑ (accumulation)</td>
</tr>
<tr>
<td>Tacrolimus</td>
<td>↓ (accumulation)</td>
</tr>
</tbody>
</table>

 Structural flexibility and multiple binding sites of ABCB1

- **Rivaroxaban is a weak to moderate substrate for ABCB1.**

 Effect of verapamil (P-gp inhibitor, weak CYP34 inhibitor)

 Caco-2 cells: ↓ rivaroxaban efflux by 23%
 ↓ dabigatran etexilate efflux by 87%

- **Rivaroxaban is a substrate for the ABCG2 transporter (BRCP)**

 - Compensatory role of BCRP
 - ↓ rivaroxaban clearance in mice lacking both ABCB1 and ABCG2
Summary

What is already known

- P-glycoprotein is involved in the transport of all DOACs.
- *ABCB1* polymorphisms influence the transport activity towards several drugs.
- There is a high inter-individual variability in DOAC plasma concentrations.

What this study adds

- The intracellular accumulation of rivaroxaban was influenced by the overexpression of *ABCB1*.
- The *ABCB1* 1236C>T-2677G>T-3435C>T and 1199G>A SNPs had no significant effect on the efflux of rivaroxaban in HEK293 cell lines.
- They are unlikely to contribute to the inter-individual variability in rivaroxaban plasma levels.
THANK YOU

Integrated PHarmacoMetrics, PharmacoGenomics and PharmacoKinetics (UCL, LDRI)
Laure Elens

Flow Cytometry and Cell Sorting Facility (UCL, DDUV)
Nicolas Dauguet

Louvain Centre for Toxicology and Applied Pharmacology (UCL, IREC)
Vincent Hauflroid
Nadtha Panin
Francine Uwambayinema
Saloua Ibouraadaten

Namur Research Institute for Life Sciences (UNamur)
Lionel Pochet
Christelle Vancraeynest
Romain Siriez

Funding
Fonds de la Recherche Scientifique - FNRS
All DOACs are moderate substrates for ABCB1. They are also substrate for ABCG2 (BCRP).

!! Dabigatran is not a P-gp substrate.
Active renal secretion by P-gp and BCRP = 30% of total rivaroxaban elimination
Characterization of ABCB1 cell surface expression by flow cytometry

in vitro effect of ABCB1 genetic polymorphisms

1236C>T-2677G>T-3435C>T
1199G>A

Characterization of ABCB1 cell surface expression by flow cytometry

II. *in vitro* effect of *ABCB1* genetic polymorphisms

Red = isotype control, blue = anti-ABCB1
Genotyping in DOAC-treated patients

<table>
<thead>
<tr>
<th>N°</th>
<th>Age</th>
<th>Sexe</th>
<th>DOAC</th>
<th>ADR</th>
<th>rs4148738</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td>M</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>CC</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>M</td>
<td>Eliquis</td>
<td>TE</td>
<td>CC</td>
</tr>
<tr>
<td>3</td>
<td>88</td>
<td>M</td>
<td>Eliquis</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>4</td>
<td>70</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>5</td>
<td>90</td>
<td>M</td>
<td>Pradaxa</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>6</td>
<td>87</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>7</td>
<td>67</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>TT</td>
</tr>
<tr>
<td>8</td>
<td>36</td>
<td>M</td>
<td>Xarelto</td>
<td>TE</td>
<td>CT</td>
</tr>
<tr>
<td>9</td>
<td>88</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>TT</td>
</tr>
<tr>
<td>10</td>
<td>80</td>
<td>M</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>TT</td>
</tr>
<tr>
<td>11</td>
<td>74</td>
<td>F</td>
<td>Eliquis</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>12</td>
<td>77</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>TT</td>
</tr>
<tr>
<td>13</td>
<td>66</td>
<td>M</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>TT</td>
</tr>
<tr>
<td>14</td>
<td>70</td>
<td>M</td>
<td>Xarelto</td>
<td>TE</td>
<td>CT</td>
</tr>
<tr>
<td>15</td>
<td>80</td>
<td>M</td>
<td>Xarelto</td>
<td>TE</td>
<td>CC</td>
</tr>
<tr>
<td>16</td>
<td>72</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>17</td>
<td>35</td>
<td>M</td>
<td>Xarelto</td>
<td>TE</td>
<td>CC</td>
</tr>
<tr>
<td>18</td>
<td>77</td>
<td>M</td>
<td>Pradaxa</td>
<td>TE</td>
<td>CT</td>
</tr>
<tr>
<td>19</td>
<td>76</td>
<td>F</td>
<td>Pradaxa</td>
<td>Bleeding</td>
<td>CT</td>
</tr>
<tr>
<td>20</td>
<td>90</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>TT</td>
</tr>
<tr>
<td>21</td>
<td>69</td>
<td>F</td>
<td>Xarelto</td>
<td>Bleeding</td>
<td>CC</td>
</tr>
</tbody>
</table>
Genotyping in DOAC-treated patients

<table>
<thead>
<tr>
<th>SNP</th>
<th>Alleles</th>
<th>Observed</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>1236C>T</td>
<td>CC</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2677G>T</td>
<td>GG</td>
<td>6</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td>GT</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3435C>T</td>
<td>CC</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>CT</td>
<td>9</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>TT</td>
<td>8</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1199G>A</td>
<td>GG</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs4148738</td>
<td>GG</td>
<td>6</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>GA</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>AA</td>
<td>5</td>
<td>7</td>
</tr>
</tbody>
</table>

- **1236C>T**
 - Observed: 5, 10, 6
 - Expected: 7, 10, 4
 - P^T observed = 0.52
 - P^T expected = 0.42
 - X^2 = 0.46

- **2677G>T**
 - Observed: 6, 9, 6
 - Expected: 7, 10, 4
 - P^T observed = 0.50
 - P^T expected = 0.41
 - X^2 = 0.53

- **3435C>T**
 - Observed: 4, 9, 8
 - Expected: 5, 10, 6
 - P^T observed = 0.60
 - P^T expected = 0.52
 - X^2 = 0.62

- **1199G>A**
 - Observed: 20, 1, 0
 - Expected: 20, 1, 0
 - P^A observed = 0.02
 - P^A expected = 0.03

- **rs4148738**
 - Observed: 6, 10, 5
 - Expected: 4, 10, 7
 - P^A observed = 0.48
 - P^A expected = 0.56
 - X^2 = 0.46

Cut-off of significance at $\alpha=0.05$: 3.84